Abstract

This paper investigates the optimal design of 3D printed energy harvesters for railway bridges. The type of harvester studied is a cantilever bimorph beam with a mass at the tip and a load resistance. These parameters are adjusted to find the optimal design that tunes the harvester to the fundamental frequency of the bridge. An analytical model based on a variational formulation to represent the electromechanical behaviour of the device is presented. The optimisation problem is solved using a genetic algorithm with constraints of geometry and structural integrity. The proposed procedure is implemented in the design and manufacture of an energy harvesting device for a railway bridge on an in-service high-speed line. To do so, first the methodology is validated experimentally under laboratory conditions and shown to offer strong performance. Next the in-situ railway bridge is instrumented using accelerometers and the results used to evaluate energy harvesting performance. The results show the energy harvested in a time window of three and a half hours (20 train passages) is E=109.32mJ. The proposed methodology is particularly useful for bridges with fundamental mode shapes above 4.5Hz, however optimal design curves are also presented for the most common railway bridges found in practice. A novelty of this work is the use of additive manufacturing to 3D print energy harvesters, thus maximising design flexibility and energy performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.