Abstract

This study investigates the effects of drug-loaded nanofibers on the solubility of the poorly water-soluble drug, loratadine. Amorphous morphologies of electrospun loratadine nanofibers were prepared using a low-cost 3D-printed electrospinning setup with counter-flow air for the rapid production of nanofibers. Polyvinylpyrrolidone was used as a carrier polymer and ethanol as a solvent in the solution preparation. The prepared nanofibers were characterized by scanning electron microscopy, differential scanning calorimetry, X-ray diffraction analysis, Fourier transform infrared spectroscopy, solubility and in vitro dissolution studies with kinetic behavior evaluation. The scanning electron microscope images showed smooth nanofiber surfaces with a mean diameter of 372 nm. Moreover, both differential scanning calorimetry and X-ray diffraction analysis confirmed the amorphous state of the prepared nanofibers. FT-IR results suggested that loratadine lost its original crystal structure by hydrogen bonding interactions. The fabricated nanofibrous drug samples demonstrated a remarkable 26-fold increase in solubility when compared to the pure drug in phosphate buffer at pH 7.4. Furthermore, dissolution studies showed that 66% of the drug from the nanofibrous mat was released in the first 10 min, which is significantly higher than the maximum of 4% drug release of the reference samples within the same time. Thus, Loratadine nanofibers can be considered as an alternative dosage form with improved physicochemical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call