Abstract

This work investigates the capabilities of a platform for nonenzymatic glucose sensing employing a novel 3D printed three‐electrode mask‐embedded design. A reservoir‐on‐mask has been fabricated for smart sample insertion to avoid spillage. Working and counter silver electrodes are modified with three different material combinations such as graphene oxide (GO), poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and GO + PEDOT:PSS, and their performance comparison is demonstrated. It is observed that the GO + PEDOT:PSS modification shows 94.57 and 71.01% higher sensitivity than GO and PEDOT:PSS, respectively, including a higher linearity compared to its counterparts. Glucose concentrations ranging from 50 to 300 mg dL−1 are detected by employing cyclic voltammetry and electrical impedance spectroscopic technique. Herein, a significantly high sensitivity of 18.8 μAmM−1 cm−2 and low limit of detection ≈ 0.4 mM has been achieved for the proposed sensor. The 3D printed mask structure provides 75% higher sample retention ability, greater reliability in terms of sample placement in the sensor and improved test performances. The proposed sensor can provide a stable and large‐scale deployable solution to future biosensing platforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.