Abstract
Calcium silicate is a common implant material with excellent mechanical strength and good biological activity. In recent years, the addition of strengthening materials to calcium silicate has been proven to promote bone tissue regeneration, but its degradation properties require further improvements. In this paper, calcium silicate was used as the matrix, and 10 wt% hydroxyapatite and 10 wt% strontium phosphate were added to im prove the biological activity of the scaffold. The effect of adding different amounts of calcium sulfate dihydrate (CaSO4·2H2O) on the degradation of the scaffold was explored. A porous ceramic scaffold was prepared by digital light processing (DLP) technology, and its performance was evaluated. Cell experiments showed that the addition of calcium sulfate improved cell proliferation and differentiation. Simulated body fluid (SBF) immersion tests showed that small amounts of apatite deposits appeared on the fourth day, larger deposits appeared on the 14th day, and degradation occurred on the surface after 28 days of immersion. Mechanical tests showed that the addition of 5 wt% CaSO4·2H2O improved the compressibility of the composite. After soaking in SBF for 14 days, it retained its compressive strength (11.8 MPa), which meets the requirements of cancellous bone, demonstrating its potential application value for bone repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.