Abstract

The development of novel embedded sensors for structural health monitoring (SHM) is crucial to provide real-time assessments of composite structures, ensuring safety, and prolonging their service life. Early damage diagnostics through advanced sensors can lead to timely maintenance, reducing costs and preventing potential catastrophic failures. This paper presents the synthesis, 3D printing, and characterization of novel embedded strain sensors using multi-walled carbon nanotube (MWCNT) -enhanced nanocomposites in fiberglass reinforced composites for potential damage diagnostics and SHM applications. MWCNTs are dispersed within structural epoxy for the additive manufacturing of nanocomposites with piezoresistive sensing capability. The 3D-printed nanocomposite sensors are embedded in fiberglass-reinforced composite laminates. The piezoresistive sensing capabilities of the 3D-printed sensors within composites are characterized by applying different levels of maximum loads and load rates under three-point bending loads. Additionally, the long-term reliability of the developed strain sensors is evaluated up to 1000 cycles. The recorded piezoresistive sensing signals show high sensitivity for the externally applied bending loads with advanced gauge factor up to 100, resulting in potential load sensing capability for in-situ damage diagnostics and real-time SHM for structural composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call