Abstract

Passive energy storing prosthetics are redesigned to improve the stored and recovered energy during different phases of the gait cycle. Furthermore, the demand of the low-cost passive prosthesis that are capable of energy storing is increasing day by day especially in underdeveloping countries. This article proposes a new passive foot design that is more energy efficient if 3D printed using thermoplastic polyurethane (TPU) material. The model is built in SOLIDWORKS®, and then the finite element analysis is conducted on ANSYS®. Two models of the foot are designed with and without Steps on the toe and heel, where the difference of Steps showed difference in the energy stored in the foot during stimulation. TPU being a flexible material with high strength and durability is chosen as the material for the 3D printed foot. The analysis performed on the foot is for an 80 kg person at different angles during the gait cycle for the K2 human activity level. The results obtained indicate high energy storage ability of TPU that is 0.044 J/Kg, comparative to other materials Hytrel, Delrin, and Carbon Fiber DA that are commonly used in passive foots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.