Abstract
Three-dimensional (3D) printing has emerged as an attractive manufacturing technique because of its exceptional freedom in accessing geometrically complex customizable products. Its potential for mass manufacturing, however, is hampered by its low manufacturing efficiency (print speed) and insufficient product quality (mechanical properties). Recent progresses in ultra-fast 3D printing of photo-polymers1-5 have alleviated the issue of manufacturing efficiency, but the mechanical performance of typical printed polymers still falls far behind what is achievable with conventional processing techniques. This is because of the printing requirements that restrict the molecular design towards achieving high mechanical performance. Here we report a 3D photo-printable resin chemistry that yields an elastomer with tensile strength of 94.6 MPa and toughness of 310.4 MJ m-3, both of which far exceed that of any 3D printed elastomer6-10. Mechanistically, this is achieved by the dynamic covalent bonds in the printed polymer that allow network topological reconfiguration. This facilitates the formation of hierarchical hydrogen bonds (in particular, amide hydrogen bonds), micro-phase separation and interpenetration architecture, which contribute synergistically to superior mechanical performance. Our work suggests a brighter future for mass manufacturing using 3D printing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.