Abstract

The current traditional medication administration method is characterized by a prevalent "one-size-fits-all" approach poses challenges in tailoring medications to individual pharmacokinetic profiles, limiting its applicability in the pharmaceutical sector. In response to this, three-dimensional (3D) printable medical devices for vaginal drug delivery are gaining popularity, due to advancements in Fused Deposition Modeling (FDM) or additive manufacturing (AM) technology. These devices offer distinct Strengths over conventional medication delivery methods, enabling the customization of drugs and the creation of intricate three-dimensional structures with personalized designs. In an additional point of interest, the development of multi-material printing integrates the beneficial properties of a variety of functional substances, presenting diverse opportunities to enhance the efficacy of vaginal drug delivery. Although there have been substantial advancements in manufacturing processes, challenges such as cost-effectiveness, scalability, and compliance with regulations remain substantial hurdles. This review focuses on the recent progress made in the field of printed using three-dimensional technology for vaginal medication delivery devices, addresses the primary challenges that need to be overcome, and explores the potential of manufacturing techniques in shaping the future of dosage forms and drug administration systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.