Abstract
This work presents reconstructions of 3D pressure fields starting from 2D3C stereoscopic-PIV (SPIV) measurements. In Fratantonio et al. (2021), we presented a new reconstruction algorithm, the “Instantaneous convection” method, capable of producing 3D velocity fields from time-resolved SPIV measurements. For reconstructions in flows with strong shear layers and high turbulence intensity, this method is able to provide time-resolved 3D velocity volumes that are more accurate than those that can be obtained from the more frequently employed reconstruction method based on the Taylor’s hypothesis and on the use of a mean convective field. Here we investigate the possibility of reconstructing the 3D pressure field from the timeresolved series of reconstructed 3D velocity data. A pseudo-tracking method is employed for computing the velocity material derivative, and the pressure field is then reconstructed by solving the 3D Poisson equation. The velocity and pressure reconstructions are validated on the Direct Numerical Simulation data of the turbulent channel flow taken from the John Hopkins Turbulence Database (JHTDB), and an application to experimental SPIV measurements of an air jet flow in coflow carried out at the Turbulent Mixing Tunnel (TMT) facility at Los Alamos National Laboratory is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: 14th International Symposium on Particle Image Velocimetry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.