Abstract
This systematic review aims to identify 3D predictors derived from biplanar reconstruction, and to describe current methods for improving curve prediction in patients with mild adolescent idiopathic scoliosis. A comprehensive search was conducted by three independent investigators on MEDLINE, PubMed, Web of Science, and Cochrane Library. Search terms included "adolescent idiopathic scoliosis","3D", and "progression". The inclusion and exclusion criteria were carefully defined to include clinical studies. Risk of bias was assessed with the Quality in Prognostic Studies tool (QUIPS) and Appraisal tool for Cross-Sectional Studies (AXIS), and level of evidence for each predictor was rated with the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) approach. In all, 915 publications were identified, with 377 articles subjected to full-text screening; overall, 31 articles were included. Torsion index (TI) and apical vertebral rotation (AVR) were identified as accurate predictors of curve progression in early visits. Initial TI > 3.7° and AVR > 5.8° were predictive of curve progression. Thoracic hypokyphosis was inconsistently observed in progressive curves with weak evidence. While sagittal wedging was observed in mild curves, there is insufficient evidence for its correlation with curve progression. In curves with initial Cobb angle < 25°, Cobb angle was a poor predictor for future curve progression. Prediction accuracy was improved by incorporating serial reconstructions in stepwise layers. However, a lack of post-hoc analysis was identified in studies involving geometrical models. For patients with mild curves, TI and AVR were identified as predictors of curve progression, with TI > 3.7° and AVR > 5.8° found to be important thresholds. Cobb angle acts as a poor predictor in mild curves, and more investigations are required to assess thoracic kyphosis and wedging as predictors. Cumulative reconstruction of radiographs improves prediction accuracy. Comprehensive analysis between progressive and non-progressive curves is recommended to extract meaningful thresholds for clinical prognostication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.