Abstract

Anode materials play a crucial role in the performance of microbial fuel cells (MFCs) in terms of power output. In this study, carbon nanotube (CNT)/polyaniline (PANI)/chitosan (CS) composites were prepared on a porous sponge matrix. The high electrical conductivity of CNTs, the capacitive behavior of PANI, and the biocompatibility of CS were leveraged to enhance the electricity generation and energy storage capabilities of MFCs. Experimental results demonstrated that the MFC with the modified anode achieved a maximum power density of 7902.4 mW/m3. Moreover, in the charging–discharging test, the stored electricity of the S/CNT/PANI/CS anode was 16.38 times that of the S/CNT anode when both the charging and discharging times were 30 min. High-throughput sequencing revealed that the modified composite anode exhibited remarkable biocompatibility and selective enrichment of electrogenic bacteria. Overall, this study presents a novel approach for developing composite MFC anode materials with energy storage functionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.