Abstract
Making composite scaffolds is one of the well-known methods to improve the properties of scaffolds used in bone tissue engineering. In this study, novel ceramic-based 3D porous composite scaffolds were successfully prepared using boron-doped hydroxyapatite, as the primary component, and baghdadite, as the secondary component. The effects of making composites on the properties of boron-doped hydroxyapatite-based scaffolds were investigated in terms of physicochemical, mechanical, and biological properties. The incorporation of baghdadite contributed to making more porous scaffolds (over 40%) with larger surface area and micropore volumes. The produced composite scaffolds almost solved the low degradation problem of boron-doped hydroxyapatite through the exhibition of higher biodegradation rates, which matched the degradation rate appropriate for the gradual transfer of loads from implants to newly formed bone tissues. Besides higher bioactivity, enhanced cell proliferation, as well as higher osteogenic differentiation (in scaffolds with baghdadite weight greater than 10%), were observed in composite scaffolds due to both physical and chemical modifications that occurred in composite scaffolds. Although our composite scaffolds were slightly weaker than boron-doped hydroxyapatite, their compressive strengths were higher than almost all composite scaffolds made by baghdadite incorporation in the literature. In fact, boron-doped hydroxyapatite provided a base for baghdadite to show mechanical strength suitable for cancellous bone defect treatments. Eventually, our novel composite scaffolds converged the advantages of both components to satisfy the various requirements needed for bone tissue engineering applications and take us one step forward on the road to fabricating an ideal scaffold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.