Abstract
Acellular tissue matrix scaffolds are much closer to tissue’s complex natural structure and biological characteristics, thus assess great advantages in cartilage engineering. We used rabbit costal cartilage to prepare acellular microfilaments and further 3D porous acellular cartilage scaffold via crosslinking. Poly(l-lysine)/hyaluronic acid (PLL/HA) multilayer film was then built up onto the surface of the resulting porous scaffold. Furthermore, TGF-β3 was loaded into the PLL/HA multilayer film coated scaffold to obtain a 3D porous acellular cartilage scaffold with sustained releasing of TGF-β3 up to 60 days. The success of this project will provide a new way for the treatment of articular cartilage defects. Meanwhile, the anchoring and on-site sustained releasing of growth factors mediated by polyelectrolyte multilayered film can also provide a new method for improving the biocompatibility and the biofunctionality for other implanted biomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.