Abstract

Three-dimensional biomedical scaffolds of porous biodegradable materials have been widely applied in tissue engineering for the purposes of bone repair and regeneration. In this study, porous biomedical scaffolds were fabricated by a solvent-casting/particulate-leaching method using poly-ε-caprolactone (PCL) as the matrix material, graphene platelets as the added material, and salt (NaCl) as the porogen material. First, the mechanical properties (compressive strength) and physical properties (porosity and contact angle) of the fabricated porous scaffolds were examined. Subsequently, weight loss and variations in pH values of the PCL/graphene scaffolds in a degradation test were determined. The biocompatibility of the fabricated PCL/graphene scaffolds was determined by seeding osteoblast-like (MG-63) cells in vitro. Graphene improved the mechanical properties of the 3D porous scaffold, and it changed the hydrophobic property of the surface of the 3D porous scaffold to a hydrophilic property. Cell attachment and proliferation improved with a higher ratio of graphene in the 3D porous scaffold (PCL/graphene).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.