Abstract

3D point clouds associated with attributes are considered as a promising data representation for immersive communication. The large amount of data, however, poses great challenges to the subsequent transmission and storage processes. In this letter, we propose a new compression scheme for the color attribute of static voxelized 3D point clouds. Specifically, we first partition the colors of a 3D point cloud into clusters by applying k-d tree to the geometry information, which are then successively encoded. To eliminate the redundancy, we propose a novel prediction module, namely graph prediction, in which a small number of representative points selected from previously encoded clusters are used to predict the points to be encoded by exploring the underlying graph structure constructed from the geometry information. Furthermore, the prediction residuals are transformed with the graph transform, and the resulting transform coefficients are finally uniformly quantified and entropy encoded. Experimental results show that the proposed compression scheme is able to achieve better rate-distortion performance at a lower computational cost when compared with state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.