Abstract
We address the problem of 3D pose estimation of multiple humans from multiple views. The transition from single to multiple human pose estimation and from the 2D to 3D space is challenging due to a much larger state space, occlusions and across-view ambiguities when not knowing the identity of the humans in advance. To address these problems, we first create a reduced state space by triangulation of corresponding pairs of body parts obtained by part detectors for each camera view. In order to resolve ambiguities of wrong and mixed parts of multiple humans after triangulation and also those coming from false positive detections, we introduce a 3D pictorial structures (3DPS) model. Our model builds on multi-view unary potentials, while a prior model is integrated into pairwise and ternary potential functions. To balance the potentials' influence, the model parameters are learnt using a Structured SVM (SSVM). The model is generic and applicable to both single and multiple human pose estimation. To evaluate our model on single and multiple human pose estimation, we rely on four different datasets. We first analyse the contribution of the potentials and then compare our results with related work where we demonstrate superior performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.