Abstract

Complete pulmonary fissures are assessed on computed tomography (CT) and are required for emphysema patients to be successfully treated with endobronchial valve (EBV) therapy. We propose a deep learning (DL) pipeline that uses a patch-based approach to quantitatively assess fissure completeness on CT and evaluate it in a clinical trial cohort. From the EBV for emphysema palliation trial (VENT), 130 CT scans were used in this study. The DL model utilizes nnU-Net as a backbone for the automatic pre- and post-processing of CT images and configuration of a 3D U-Net to segment patches of fissure and non-fissure. Five-fold cross validation is applied for training and inferences are obtained using a sliding window approach. Average symmetric surface distance (ASSD) and surface dice coefficient (SDC) at a threshold of 2mm evaluates segmentation performance. A fissure integrity score (FIS) is calculated as the percentage of complete fissure voxels along the surface of the assumed interlobar region using pulmonary lobar segmentations. A predicted-FIS (p-FIS) is quantified from the CNN output and is compared to the reference-FIS (r-FIS) as complete (FIS≥90%), partial (10%≤ FIS< 90%) or absent (FIS< 10%). A mean(±SD) SDC of 0.95(±0.037) is achieved for the left oblique fissure (LOF); 0.84(±0.144) for the right horizontal fissure (RHF), and 0.94(±0.098) for the right oblique fissure (ROF). Concordance rate of p-FIS and r-FIS is 86.4%, 88.6%, and 86.4% for the LOF, RHF, and ROF, respectively. A DL pipeline using a patch-based approach has potential to segment interlobar fissures from CT to quantitatively assess fissure completeness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.