Abstract

In this short review, we overview some advancements made in Li-ion battery anode development, where the structural arrangement of the material plays an important role. Specifically, we summarise the benefits of 3D macroporous structure imposed the anode material, in order to improve ionic and electronic conductivity in the absence of conductive additives and binders. Two anode materials are overviewed: TiO2 and GeO2. These are either high capacity anode materials or accessible, abundant materials that are capable of very stable and long-term cycling. We have focused this review on 3D inverse opal structures of these anodes and summarise their enhanced behaviour by comparing their performance metrics to a range of nanoscale and porous analogues of these materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.