Abstract
In view-based 3-D object retrieval, each object is described by a set of views. Group matching thus plays an important role. Previous research efforts have shown the effectiveness of Hausdorff distance in group matching. In this paper, we propose a 3-D object retrieval scheme with Hausdorff distance learning. In our approach, relevance feedback information is employed to select positive and negative view pairs with a probabilistic strategy, and a view-level Mahalanobis distance metric is learned. This Mahalanobis distance metric is adopted in estimating the Hausdorff distances between objects, based on which the objects in the 3-D database are ranked. We conduct experiments on three testing data sets, and the results demonstrate that the proposed Hausdorff learning approach can improve 3-D object retrieval performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.