Abstract

We present the results of numerical simulations of 3D magnetic reconnection driven by photospheric footpoint motions. The model consists of two positive and two negative sources, which are placed on opposite boundaries of the cubic domain. Two different types of photospheric motions are then considered, namely rotating and twisting of the sources. These different footpoint motions result in a difference in the evolution of the magnetic skeleton and the location and efficiency of the energy build up. Both the dynamical evolution and the corresponding potential evolution of each system is investigated and a comparison is made between the energy storage and release that occurs at separators and separatrix surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.