Abstract

In this paper, the authors developed a three dimensional shell-spring numerical model of a shield tunnel, in which the elastic shell elements were adopted to model the segments and the spring models were used for the simulation of the segmental joints. The highlight of this research is that the non-linearity of the joint bending stiffness was taken into consideration, which was first determined through the numerical simulation by using a refined 3D continuum model of the segment-joint structure. The automatic iteration of the joint bending stiffness was achieved through programming with the ANSYS ADPL software. Based on a specific engineering example, a 3D continuum-shell-spring model was established to analyze the internal forces of shield tunnel segmental linings subject to swelling soils. The developed numerical model and its application in the analysis of the internal forces of shield tunnel segmental linings in swelling ground will provide useful reference and guidance for the numerical calculation in similar engineering projects in future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.