Abstract

Targeted at the 3000kVA and 1500kVA electric arc furnaces for MgO production, 3D models are developed to characterize the thermal behavior in the furnaces. The electromagnetic stirring effect of the molten bath is studied respectively with a rated current, and its influence on the temperature field is predicted by the model in FLUENT. Some calculated results are proved reliable by comparison with the measurements. It can be seen that a stronger stirring effect leads to a higher average flow velocity in the 3000kVA furnace, and the size of its molten bath is much larger than that in the 1500kVA furnace. The appropriate location of the three electrodes can help to maintain a homogenous bath temperature distribution. The comparison between the calculated results and the measurements proves that the dimensional designs of the two furnaces are acceptable for the prevention of the local overheating or overcooling. Large-capacity electric arc furnaces are qualified with significant advantages in energy conserving and increase of productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.