Abstract

A 3D numerical model has been developed to study the deposition patterns for sediment dumping in ambient water with cross-flow. The model formulation is based on the governing equations for the conservation of mass, momentum, and density excess, assuming the discrete particles can be represented by a continuous field of density difference with a specified settling velocity. To model the turbulence generated by the particles, a buoyancy extended k-e model is employed. Numerically, the governing equations are split into three parts in the finite-difference solution: advection, dispersion, and pressure propagation. The advection part is solved by a characteristics-based scheme, the dispersion part is solved by the central difference method, and the pressure propagation part is solved implicitly by using the Gauss-Seidel iteration method. The computed results show that two different deposition patterns exist. One is oblong, and the other is horseshoe-shaped, depending on the ratio of the initial negative buoy...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call