Abstract
A new 3D parallel numerical code in spherical coordinates has been developed to study the stellar wind flow around hot Jupiter. The peculiarity of the spherical coordinate system in the vicinity of the poles is overcome by using a ternary spherical grid, which is a composite grid consisting of three separate sectors. The numerical model of multicomponent magnetohydrodynamics, developed earlier for Cartesian coordinates, has been transferred to the new model. The results of a numerical calculation of the structure of an extended envelope of a quasi-open type for the case of a super-Alfvenian flow around a hot Jupiter are presented. We showed that the spatial resolution of the grid is sufficient for a self-consistent calculation of the structure of the atmosphere of a hot Jupiter. This allows further use of the new model for 3D aeronomic calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.