Abstract
为解决三维核磁共振成像(Magnetic Resonance Imaging, MRI)与正电子发射断层成像(Positron Emission Tomography, PET)融合细节表达不足及能量信息不完善问题,提出了一种基于三维非下采样离散剪切波变换(3D Nonsubsampled Discrete Shearlet Transform,3D NSDST)和改进空间频率(spatial frequency,SF)相结合的图像融合方法。利用3D NSDST将MRI图像和PET图像分解为一个低频子带和若干个高频子带。低频子带取用改进SF的融合策略,自适应调节图像块的大小,同时考虑了三维空间内二十六邻域的体素信息,引入了三维拉普拉斯能量和来保留细节信息。高频子带取用脉冲耦合神经网络(Pulse Coupled Neural Network,PCNN)的融合策略,将三维拉普拉斯能量和作为输入,并用三维梯度能量作为链接强度来调节神经元。最后经3D NSDST逆变换重构图像,实现MRI/PET图像融合。实验结果表明,3D NSDST和改进空间频率相结合的融合策略可以有效保留图像中的细节信息,同时不会影响图像的整体对比度,在主观评价和客观评价上与已有算法相比具有一定优势。
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.