Abstract

We construct a supersymmetric extension of three-dimensional Newton–Cartan gravity by gauging a super-Bargmann algebra. In order to obtain a non-trivial supersymmetric extension of the Bargmann algebra one needs at least two supersymmetries leading to a super-Bargmann algebra. Due to the fact that there is a universal Newtonian time, only one of the two supersymmetries can be gauged. The other supersymmetry is realized as a fermionic Stueckelberg symmetry and only survives as a global supersymmetry. We explicitly show how, in the frame of a Galilean observer, the system reduces to a supersymmetric extension of the Newton potential. The corresponding supersymmetry rules can only be defined, provided we also introduce a ‘dual Newton potential’. We comment on the four-dimensional case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.