Abstract

High-performance focusing of X-rays requires the realization of very challenging 3D geometries with nanoscale features, sub-millimeter-scale apertures, and high aspect ratios. A particularly difficult structure is the profile of an ideal zone plate called a kinoform, which is manufactured in nonideal approximated patterns, nonetheless requires complicated multistep fabrication processes. Here, 3D fabrication of high-performance kinoforms with unprecedented aspect ratios out of low-loss plastics using femtosecond two-photon 3D nanoprinting is presented. A thorough characterization of the 3D-printed kinoforms using direct soft X-ray imaging and ptychography demonstrates superior performance with an efficiency reaching up to 20%. An extended concept is proposed for on-chip integration of various X-ray optics toward high-fidelity control of X-ray wavefronts and ultimate efficiencies even for harder X-rays. Initial results establish new, advanced focusing optics for both synchrotron and laboratory sources for a large variety of X-ray techniques and applications ranging from materials science to medicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.