Abstract

Hydrogen, derived from solar-water splitting, is a clean and renewable fuel for which per gram energy storage capacity is even higher than fossil fuels. Towards the development of a viable technology for above conversion, this report describes enhanced performance in photoelectrochemical water splitting using uniquely evolved nano-hetero-structured bilayered thin films, CuO/Ru–ZnO as photoanode. Grown over ITO (In:SnO2) glass substrates by using low-cost and easily up-scalable wet chemical methods, films were characterized for microstructure, optical behaviour and surface characteristics, using XRD and other spectral measurements viz. FESEM, AFM, TEM, UV–Visible Spectroscopy, EDX and XPS. Against monolayered pristine films of CuO and ZnO, bilayered films yielded a major gain in PEC water splitting photocurrent, on being used as working electrode in PEC cell, in conjunction with platinum counter electrode and saturated calomel reference electrode (electrolyte solution 0.1 M NaOH solution, pH 13, temperature 30 ± 3.6 °C). Films with 1% Ru-incorporation yielded highest photocurrent (2.04 mA/cm2). Enhanced photoactivity of bilayered films was found correlated with increments in light absorption, charge carrier density and film surface area, coupled with reduced electrical resistivity. The study highlights an important role played by Ru added in ZnO overlayer, apparently existing as RuO2 nanoparticles dispersed in ZnO lattice, in hole-transfer from valence band of CuO underlayer to electrolyte, thereby imparting a significant boost on photocurrent generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.