Abstract
Single-atom Fe-N-C electrocatalysts have emerged as the most promising oxygen reduction reaction (ORR) catalyst. However, the low Fe loading and inaccessibility of Fe-N-C sites limit the overall ORR activity. Here, we report an efficient single-atom electrocatalyst (Fe-N-C/N-OMC) with Fe-N-C sites embedded in three-dimensional (3D) N-doped ordered mesoporous carbon framework. Fe-N-C/N-OMC shows high half-wave potential, kinetic current density, turnover frequency and mass activity towards ORR in alkaline electrolyte. Experiments and theoretical calculations suggest that the ultra-high ORR activity stems from the boosted intrinsic activity of FeN4 sites by graphitic N dopants, high density of accessible active site generated by high Fe and N loadings and ordered mesoporous carbon structure as well as facilitated mass and electron transport in 3D interconnected pores. Fe-N-C/N-OMC also shows comparable ORR activity to Pt/C in acidic electrolyte. As the cathode for zinc-air battery, Fe-N-C/N-OMC exhibits high open-circuit voltage, high power density and remarkable durability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.