Abstract

A three-dimensional (3D) tumor spheroid model plays a critical role in mimicking tumor microenvironments in vivo. However, the conventional culture methods lack the ability to manipulate the 3D tumor spheroids in a homogeneous manner. To address this limitation, we developed a microfluidic-based droplet system for drug screening applications. We used a tree-shaped gradient generator to control the cell density and encapsulate the cells within uniform-sized droplets to generate a 3D gradient-sized tumor spheroid. Using this microfluidic-based droplet system, we demonstrated the high-throughput generation of uniform 3D tumor spheroids containing various cellular ratios for the analysis of the anti-cancer drug cytotoxicity. Consequently, this microfluidic-based gradient droplet generator could be a potentially powerful tool for anti-cancer drug screening applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.