Abstract

H.264/MVC multi-view video coding provides a better compression rate compared to the simulcast coding using hierarchical B-picture prediction structure exploiting inter- and intra-view redundancy. However, this technique imposes random access frame delay as well as requiring huge computational time. In this paper a novel technique is proposed using 3D motion estimation (3D-ME) to overcome the problems. In the 3D-ME technique, a 3D frame is formed using the same temporal frames of all views and ME is carried out for the current 3D frame using the immediate previous 3D frame as a reference frame. As the correlation among the intra-view images is higher compared to the correlation among the inter-view images, the proposed 3D-ME technique reduces the overall computational time and eliminates the frame delay with comparable rate-distortion (RD) performance compared to H.264/MVC. Another technique is also proposed in the paper where an extra reference 3D frame comprising dynamic background frames (the most common frame of a scene i.e., McFIS) of each view is used for 3D-ME. Experimental results reveal that the proposed 3D-ME-McFIS technique outperforms the H.264/MVC in terms of improved RD performance by reducing computational time and by eliminating the random access frame delay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.