Abstract

This paper presents a LiDAR-based 3D Monte Carlo localization (MCL) with an efficient distance field (DF) representation method. To implement 3D MCL, high computing capacity is required because the likelihood of many pose candidates, i.e., particles, must be calculated in real time by comparing sensor measurements and a map. Additionally, a large-scale map is needed for allocation to embedded computers since autonomous vehicles are required to navigate wide areas. These make it difficult for 3D MCL implementation. This paper first presents an efficient DF representation method while considering the 3D LiDAR-based localization characteristics. Because each DF voxel has the closest distance from occupied voxels, swift comparison of the sensor measurements and map can be achieved. Consequently, 3D MCL using the likelihood field model (LFM) can be executed in real time. Furthermore, this paper presents a method for improving the localization robustness to environmental changes without increasing memory and computational cost from that of the LFM-based MCL. Through experiments using the SemanticKITTI dataset, we show that the presented method can efficiently and robustly work in dynamic environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.