Abstract
PurposeThe purpose of this study is to model the electric field distribution in 3D in the vicinity of 400 kV power line to determine the field impact on the environment and on the human body depending on the person location and presence of other objects.Design/methodology/approachThe real 3D geometry of the three-phase line because of the line sag presence and existence of additional objects in its vicinity is considered. The time-harmonic electric field has been modeled, taking into account 1,200 phase shifting between the three-phase, 50 Hz currents. The study has been carried out using the finite element method (FEM) and COMSOL Multiphysics 5.2 software package. Special attention was paid to the field at a height of 2 m from the ground, to estimate the field influence on the located human body in the studied area (in relation to the limits for permissible electric field values).Findings3D map of electric field in the line vicinity and the electric field strength distribution along the observation surface (2 m from the ground) are determined for several region configurations: without additional objects, human presence just under the line, human at a certain distance from the line and presence of human and a tree. The simulation model was validated on the basis of comparison with computed and experimental data presented in the literature.Originality/value3D FEM modeling makes it possible to consider the real environment configuration, presence of line sag and additional objects with different material properties and obtaining of field quantities at any point of observation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: COMPEL - The international journal for computation and mathematics in electrical and electronic engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.