Abstract
The study aim was to develop a 3D model representing the aircraft air conditioning system with the purpose of performing a numerical experiment in an automated environment of engineering analysis. The completeness of this model was associated with the required result of the numerical experiment. During the experiment, we simulated conditions for the flow of aerodynamic processes in the vicinity of the louvre integrated into the fuselage skin at the point of communication between the air conditioning system and the external environment. Of particular interest was that part of the air conditioning system, which directly affects the louvre strength. The Siemens NX computer-aided design system was used to form a digital copy of the original. The toolkit of this system allows high-precision geometric models to be designed. As a result, a 3D-model was obtained applicable to simulate external and internal aerodynamical processes in the digital environment of engineering calculations for evaluating the strength parameters of the studied part. This model is a combination of geometric objects formed by a set of assembly units. In particular, such elements of the air conditioning system as the cooling turbine, radiator, and valve, are considered. In order to recreate the complex geometry of the original assembly parts of these units, an algorithm for selecting and performing typical operations of the Siemens NX system was developed and optimized for constructing correct 3D models. The constructed 3D model of the aircraft air conditioning system can be used when simulating external and internal aerodynamical processes affecting the louvre strength in the digital environment of engineering calculations. The proposed model allows users to study the structure of aircraft air conditioning systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.