Abstract
Full 3D particle filtration modeling at low pressures considering slip/transition/free molecular flow regime, particle–fiber interactions, air/particle slip, sieve and homogenous flow field has been performed for the polyurethane nanofiber filter prepared by electrospinning process and the obtained theoretical predictions for the filtration efficiency have been compared with the corresponding experimental data. Moreover, the effect of air velocity, viscosity, temperature, pressure and particle–fiber friction coefficient on the produced polyurethane nanofiber filter efficiency has been investigated in more details. In order to take all real structure features of the nanofiber filter into account (such as varying fiber diameter, curvature along its length, inhomogeneity and mat defects), a new approach for 3D nanofiber mat model construction from corresponding SEM images has been proposed and utilized.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.