Abstract
AbstractFor the simulation of fiber systems, there exist several stochastic models: systems of straight non overlapping fibers, systems of overlapping bending fibers, or fiber systems created by sedimentation. However, there is a lack of models providing dense, non overlapping fiber systems with a given random orientation distribution and a controllable level of bending. We present in this paper the recently developed stochastic model that generalizes the force-biased packing approach to fibers represented as chains of balls. The starting configuration is a boolean system of fibers modeled by random walks, where two parameters in the multivariate von Mises-Fisher orientation distribution control the bending. The points of the random walk are associated with a radius and the current orientation. The resulting chains of balls are interpreted as fibers. The final fiber configuration is obtained as an equilibrium between repulsion forces avoiding crossing fibers and recover forces ensuring the fiber structure. This approach can provide high volume fractions up to 72 %. Furthermore, we study the efficiency of replacing the boolean system by a more intelligent placing strategy, before starting the packing process. Experiments show that a placing strategy is highly efficient for intermediate volume fraction.KeywordsStochastic ModelOrientation DistributionHigh Volume FractionFiber SystemBoolean ModelThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.