Abstract

This paper describes a comprehensive model of wastewater treatment in secondary facultative ponds, which combines 3D hydrodynamics with a mechanistic water quality model. The hydrodynamics are based on the Navier–Stokes equation for incompressible fluids under shallow water and Boussinesq assumptions capturing the flow dynamics along length, breadth and depth of the pond. The water quality sub model is based on the Activated Sludge Model (ASM) concept, describing COD and nutrient removal as function of bacterial growth following Monod kinetics, except for Escherichia coli removal, which was modelled as first order decay. The model was implemented in the Delft3D software and was used to evaluate the effect of wind and the addition of baffles on the water flow pattern, temperature profiles in the pond and treatment efficiency. In contrast to earlier models reported in the literature, our simulation results did not show any significant improvement in COD removal (based on the ASM concept) with addition of baffles or under intermittent wind-induced mixing. However, E. coli removal efficiency, based on a first order decay approach, showed a fair improvement in the presence of baffles or intermittent wind-induced mixing. Furthermore, simulations with continuous wind effect showed a decrease in removal efficiency for COD but a further increase in E. coli removal efficiency. Such contrasting results for two different approaches in modelling could indicate that the first order decay concept might not be appropriate to describe all the interactions between biochemical processes in a pond. However, these interpretations remain theoretical, as the model needs validation with field data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call