Abstract

The article presents a three-dimensional mathematical model of the gas filtration process in porous media and a numerical algorithm for solving the initial-boundary value problem. The developed model is described using the nonlinear differential equation in partial derivatives with the appropriate initial and boundary conditions. The proposed mathematical apparatus makes it possible to carry out hydrodynamic calculations taking into account changes in the main factors affecting the process under consideration: permeability, porosity, and thickness of layers, gas recovery coefficient, viscosity, etc. Computer implementation of the model provides an opportunity to solve practical problems of analysis and forecasting of the gas production process under various conditions of impact on the productive reservoir, as well as making decisions on the development of existing and design of new gas fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.