Abstract

The three-dimensional mode-deformable discrete element method (3MDEM) is an extended distinct element approach under the assumptions of small strain, finite displacement, and finite rotation of blocks. The deformation of blocks is expressed by the combination of the deformation modes in 3MDEM. In this paper, the elastoplastic constitutive relationship of blocks is implemented on the 3MDEM platform to simulate the integrated process from elasticity to plasticity and finally to fracture. To overcome the shortcomings of the conventional criterion for contact fracturing, a new criterion based on plastic strain is introduced. This approach is verified by two numerical examples. Finally, a cantilever beam is simulated as a comprehensive case study, which went through elastic, elastoplastic, and discontinuous fracture stages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.