Abstract

Despite the significance of tumour neoangiogenesis and the extensive knowledge on the molecular basis of blood vessel formation currently no quantitative data exist on the 3D microvascular architecture in human primary tumours and their precursor lesions. This prompted us to examine the 3D vascular network of normal colon mucosa, adenomas and invasive carcinomas by means of quantitative microvascular corrosion casting. Fresh hemicolectomy specimens from 20 patients undergoing cancer or polyposis coli surgery were used for corrosion casting, factor VIII and VEGF immunostaining. In addition, immunostaining was done on colorectal tissue from 33 patients with metastatic and non-metastatic carcinomas, polyposis coli and adenomas. This first quantitative analysis of intervessel and interbranching distances, branching angles and vessel diameters in human cancer specimens revealed distinct patterns of the microvascular unit in the tumour centre and periphery. Irrespective of the tumour localization and grading all individual tumours displayed qualitatively and quantitatively the same vascular architecture. This gives further evidence for the existence of a tumour type-specific vascular architecture as recently demonstrated for experimental tumours. Metastatic tumours displayed different vascular architectures only within hot spots, in terms of smaller intervascular distances than in non-metastatic tumours. Pre-cancerous lesions have in part virtually the same vascular architecture like invasive carcinomas. Comparison of VEGF immunostaining also suggests that angiogenesis sets in long before the progress towards invasive phenotypes and that the so-called angiogenic switch is more likely a sequence of events. © 2001 Cancer Research Campaign www.bjcancer.com

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.