Abstract

We present herewith detailed theoretical modeling coupled with experimental analysis of a micromachined inductive suspension (MIS). The reported MIS is based on two coaxial 3D solenoidal microcoils realized using our wirebonding technology. The two coils are excited using an AC signal with 180° phase-shift and a conductive proof mass (PM) is stably levitated on top of the coils. Using a micromechanical displacement sensor, we experimentally derive the lateral, vertical and angular stiffness constants of our MIS. Based on the analytical model presented here, we discuss the stability of the levitated proof mass as a function of the geometrical parameters of the design. We further test our model by applying it to another previously reported MIS structure realized using planar technology, providing stability diagrams as well as design guidelines for further developments of the micromachined inductive suspension as, for instance, miniature rotating gyroscopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.