Abstract
ABSTRACT We explore the pulsationally driven orbital mass ejection mechanism for Be star disc formation using isothermal, 3D magnetohydrodynamic (MHD) and hydrodynamic simulations. Non-radial pulsations are added to a star rotating at 95 per cent of critical as an inner boundary condition that feeds gas into the domain. In MHD, the initial magnetic field within the star is weak. The hydrodynamics simulation has limited angular momentum transport, resulting in repeating cycles of mass accumulation into a rotationally supported disc at small radii followed by fall-back on to the star. The MHD simulation, conversely, has efficient (Maxwell αM ∼ 0.04) angular momentum transport provided by both turbulent and coherent magnetic fields: a slowly decreting midplane driven by the magnetorotational instability and a supersonic wind on the surface of the disc driven by global magnetic torques. The angle and time-averaged properties near the midplane agree reasonably well with a 1D viscous decretion disc model with a modified $\tilde{\alpha }=0.5$, in which the gas transitions from a subsonic thin disc to a supersonic spherical wind at the critical point. 1D models, however, cannot capture the multiphase decretion/angular structure seen in our simulations. Our results demonstrate that, at least under certain conditions, non-radial pulsations on the surface of a rapidly rotating, weakly magnetised star can drive a Keplerian disc with the basic properties of the viscous decretion disc paradigm, albeit coupled to a laminar wind away from the midplane. Future modelling of Be star discs should consider the possible existence of such a surface wind.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.