Abstract

AbstractHuman adipose‐derived stem/stromal cells (hASCs) have been popularly studied as cell‐based therapy in the field of regenerative medicine due to their ability to differentiate into several cell types. In this study, in order to improve the mechanical strength and bioactivity of scaffolds for bone tissue engineering, three types of mesoporous bioactive glasses with different shapes and compositions were dispersed in the silk fibroin/chitosan (SF/CS)‐based scaffolds, which were fabricated with a combination of freezing and lyophilization. The characteristic and physical properties of these composite scaffolds were evaluated. The biocompatibility was also assessed through hASCs in vitro tests. Both Alamar Blue® and Live/Dead assay® revealed that the spherical mesoporous bioactive glass doped scaffolds enhanced cell viability and proliferation. Furthermore, the addition of spherical mesoporous bioactive glass into SF/CS scaffolds encouraged hASC osteogenic differentiation as well. These results suggested that this composite scaffold can be applicable material for bone regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.