Abstract

There is an increasing interest in applying deep learning to 3D mesh segmentation. We observe that 1) existing feature-based techniques are often slow or sensitive to feature resizing, 2) there are minimal comparative studies and 3) techniques often suffer from reproducibility issue. This study contributes in two ways. First, we propose a novel convolutional neural network (CNN) for mesh segmentation. It uses 1D data, filters and a multi-branch architecture for separate training of multi-scale features. Together with a novel way of computing conformal factor (CF), our technique clearly out-performs existing work. Secondly, we publicly provide implementations of several deep learning techniques, namely, neural networks (NNs), autoencoders (AEs) and CNNs, whose architectures are at least two layers deep. The significance of this study is that it proposes a robust form of CF, offers a novel and accurate CNN technique, and a comprehensive study of several deep learning techniques for baseline comparison.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.