Abstract

Microdosimetry is an extremely useful technique, used for dosimetry in unknown mixed radiation fields typical of space and aviation, as well as in hadron therapy. A new silicon microdosimeter with 3D sensitive volumes has been proposed to overcome the shortcomings of the conventional Tissue Equivalent Proportional Counter. In this article, the charge collection characteristics of a new 3D mesa microdosimeter were investigated using the ANSTO heavy ion microprobe utilizing 5.5 MeV He <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2+</sup> and 2 MeV H <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> ions. Measurement of the microdosimetric characteristics allowed for the determination of the Relative Biological Effectiveness of the <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">12</sup> C heavy ion therapy beam at the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. Well-defined sensitive volumes of the 3D mesa microdosimeter have been observed and the microdosimetric RBE obtained showed good agreement with the TEPC. The new 3D mesa “bridge” microdosimeter is a step forward towards a microdosimeter with fully free-standing 3D sensitive volumes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.