Abstract
Measurements of the flow field around a flat plate and rigid plates with spanwise periodic cambering were performed using volumetric three-component velocimetry (V3V) at a Reynolds numbers of 28,000 at α=12° where the flow is fully separated. The Reynolds normal and shear stresses, and the streamwise, spanwise and normal components of the vorticity vector are investigated for three-dimensionality. Flow features are discussed in context of the periodic cambering and corresponding aerodynamic force measurements. The periodic cambering results in spanwise variation in the reversed-flow region, Reynolds stresses and spanwise vorticity. These spanwise variations are induced by streamwise and normal vortices of opposite directions of rotation. Moreover, measurements were carried out for the cambered plates at α=8°, where a long separation bubble exists, to further understand the behavior of the streamwise and normal vortices. These vortices become more organized and increase in strength and size at the lower angle of attack. It is also speculated that these vortices contribute to the increase in lift at and beyond the onset of stall angle of attack.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.