Abstract

A modification to the 3D modified driven equilibrium Fourier transform (MDEFT) imaging technique is proposed that reduces its sensitivity to RF inhomogeneity. This is especially important at high field strengths where RF focusing effects exacerbate B(1) inhomogeneity, causing significant signal nonuniformity in the images. The adiabatic inversion pulse used during the preparation period of the MDEFT sequence is replaced by a hard (nonadiabatic) pulse with a nominal flip angle of 130 degrees. The spatial inhomogeneity of the hard pulse preparation compensates for the inhomogeneity of the excitation pulses. Uniform signal intensity is obtained for a wide range of B(1) amplitudes and the high CNR characteristic of MDEFT is retained. The new approach was validated by numerical simulations and successfully applied to human brain imaging at 4.7 T, resulting in high-quality T(1)-weighted images of the whole human brain at high field strength with uniform signal intensity and contrast, despite the presence of significant RF inhomogeneity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.