Abstract
We have investigated different approaches to solve magnetotelluric forward modeling problems. Besides classical direct electromagnetic (EM) formulation, ungauged and gauged (Lorenz, Coulomb, and axial) vector and scalar potential formulations are discretized using the finite-difference (FD) numerical solution technique. Linear matrix equations obtained from FD discretization for each EM field formulation are solved by using the conjugate-gradient iterative solution method. We compared FD solutions of each approach with respect to accuracy and speed. We found that all approaches generate accurate results. However, an ungauged approach gave solutions with a lower conjugate-gradient iteration and accordingly less computer time. All stiffness matrices arising from each formulation are examined in terms of their size and type. FD solution of the Coulomb-gauge and ungauged approaches generates larger stiffness matrices than the other approaches. Direct EM, ungauged, and axial-gauge approaches generate a symmetric stiffness matrix. We recommend the use of the ungauged approach in inversion algorithms, which gives faster forward solution, amongst other things.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.