Abstract

AbstractIn‐plane microbatteries (MBs) with features of facile integration, mass customization, and especially superior electrochemical performance are urgently required for self‐powered microelectronic devices. In this work, a facile manufacturing process is employed to fabricate Zn–MnO2 MB with a 3D macroporous microelectrode. Benefiting from the high electron/ion transport path of 3D macroporous microelectrode and high mass‐loading of poly(3,4‐ethylenedioxythiophene)‐manganese dioxide (PEDOT‐MnO2) film, the MB achieves an ultrahigh capacity of 0.78 mAh cm−2 and an outstanding areal energy density of 1.02 mWh cm−2. Moreover, 3D macroporous PEDOT‐MnO2 hybrid film is achieved by one‐step electrodeposition, which effectively improves the cycling performance without reducing areal capacity or hindering the ion diffusion. Notably, the MB can stably drive an electronic timer for ≈400 min or be integrated and operated on the surface of a digital hygro‐thermometer. The MBs are capable of operating stably in the high rotation speed and vibration condition, such as applied on the surface of an axial‐flow fan. Moreover, the MB can integrate by stacking the substrate‐free microelectrodes and achieving outstanding energy density of 3.87 mWh cm−2. Therefore, the PEDOT‐MnO2//Zn MB has good prospects as a next‐generation component applied in self‐powered microelectronic devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.