Abstract

Boron-doped diamond (BDD) has proved to be an ideal anode material for the electrolysis of organic sewage. However, the existing two dimensional BDD electrodes with small active area and low mass transfer rates, limit their further improvement in degradation efficiency. In this paper, a novel three dimensional macroporous BDD (3D-BDD) foam electrode with a structure of evenly distributed pores and interconnected networks in which wastewater can flow freely was prepared using a simple and reproducible method. Compared to two dimensional BDD electrodes of the same geometry, the electro-active surface area of 3D-BDD electrode increased by ˜20 times, and the electrochemical oxidation reaction rate constant of RB-19 increased by ˜350 times. Under optimized conditions, the energy consumption reduced to a minimum of 0.03 kWh(gTOC) −1, and the MCE reach a maximum of 325.86%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.